Installation manual for plastic horizontal containers Extracts relevant for installation of a well according to the standard EN 976-2 # Lifting up the container Use lifting belts for lifting up the container. Steel cables and chains should not be put around the container. Figure 1: Lifting up the container # Lifting up the container Use all lifting positions that exist or that are marked on the container (please see Figure 1). Lift the containers up and place them on the filling bottom in correct position and at the required level. ### **Requirements for installation components** #### Filling material The material should be clean, sorted, freely flowing and should not contain ice, snow, clay, organic materials or bodies too big or heavy that could damage the container when falling upon it. Minimal bulk density is 1,500 kg/m³. #### Gravel Filling material may pass through a screen with 2.4 mm openings only to the extent of 3%. The material must be round pea-shaped like gravel with a particle size between 3 mm and 20 mm. # Stone chippings The particle size of chippings must be between 3 mm and 16 mm, and the material may pass through a screen with 2.4 mm openings only to the extent of 3%. #### Sand Sand must be thoroughly sorted and the material may pass through a screen with 75 μ m openings only to the extent of 8%. The size of the biggest particle must be less than 3 mm. ### Sand/gravel mixes Sand/gravel mixes can be used if the constituent parts fulfill the above-provided requirements set for the gravel, chippings and sand. Sand/gravel mixes should be compacted according to the instructions below. The prescribed filling material is gravel or stone chippings. Ease of placement and of ability to achieve proper supporting surface with minimal need for compacting make these materials ideal as filling materials. ### NOTE: If the containers are installed without complete coating layer, they can start to drift during flooding even when fixed with belts. Therefore, if filling works are interrupted and the container is left without any coating layer, ballast liquid should be poured into the container to prevent its drifting. ## **Anchoring of the container** If calculation shows that the weight of soil over the container is not sufficient to prevent it from lifting up (to prevent flotation of one container, it is usually sufficient to have coating layer with a thickness of 0.7 times of diameter of the container), the container should be anchored using bottom plates or sleepers. The number of anchoring points at the both sides of the container must be equal to the number of positions shown on the container. ### Concrete bottom plate If base is needed, it must consist of reinforced concrete with a thickness of at least 200 mm, that has two layers of light reinforced net (interval 200 x 200, wire diameter 7 mm, 3.02 kg/m²), minimum strength 21 N/mm² (28 days later) that is installed evenly on a 50 mm sand foundation. If soil conditions require, sulphate-resistant concrete must be used. Bottom plate must extend at least 300 mm further than the sides of the container and must be of the same length as the container's total length. #### **Sleepers** Sleepers must be made of concrete. They must be sufficiently large to prevent the container lifting up after filling the pit. All sleepers must have at least two anchoring points and the total number of corresponding points on the sleepers must equal the number of points shown on the container. Sleepers should be installed outside of the container's diameter. ### **Anchoring points** Anchoring points should be constructed from 20 mm steel rods that are bent into the corresponding shape and are installed under the bottom reinforcement by one end. The rods should not be under the container's edge and inside 150 mm radius from the bottom edge. All extruding metallic parts must be hot-dip galvanized and covered with protection layer or protected against corrosion in some other suitable manner. Alternatively, anchoring belts can be pulled under the bottom or through the bottom opposite to anchoring points locations; in that case, the belts are positioned vertically. # **Anchoring belts** Anchoring belts must be manufactured from GRP, nylon or other nonmetallic material that is resistant to the surrounding environment and is able to completely withstand to upward tension created by empty container surrounded by filling. The belts must be located at the places indicated on the container by manufacturer. Tensioning of the belts too much should be avoided to prevent damaging the container. Figure 2. Anchoring of the container to the plate. *Figure 3. Anchoring of the container with sleepers.* - a) length of the servicing well - b) 450 mm in case of stable surface and ½ D in case of unstable surface ### **Bottom layer** A layer of at least 200 mm of gravel filling must be installed on the bottom of the pit or the concrete plate. Place the container to the layer and anchor it. Shovel sand manually between the ribs and legs and under the end covers. To force and compact sand under the ribs and end covers, use 50 mm x 100 mm board. Ensuring a good compactness under end covers and under container's bottom is very important. The first two lifting layers need manual probing and compacting. ### **Filling** Gravel filling must be placed evenly around all sides of the container and compacted by non-metallic probes (for example by wooden board). Filling must be thoroughly compacted, especially between the sides and the legs and under/around pipe connections. When using sand, it should be compacted mechanically with 300 mm intervals at least to 95% of the standard compactness, watering sand if necessary. Water should be poured into the container in parallel with back filling work until the current back filling level. The process is continued until the filling material has risen to neck of the inlet opening. Detailed description of the filling procedure is given below (separately for gravel and for sand). Use the same materials as for the bottom layer. Install the first 300 mm evenly around the containers. To ensure that there is necessary support, filling must be pushed completely under the bottom between the ribs and under the end covers. A long probe can be used for penetrating the filling, by pushing it between all the ribs and under the end covers in points 3 to 5. Place next 300 mm evenly around the containers. Pour water into the container until it reaches the same back filling level. Repeat the filling compacting procedure. | 1) Probe with long shaft | |----------------------------|----------------------------|-----------------------------|-------------------------------| | 2) First 300 mm of filling | 2) First 300 mm of filling | 2) Second 300 mm of filling | 2) Rounded and compacted part | | 3) 200 mm bottom layer | Figure 4. Installation procedure using gravel filling If it is necessary to prevent freezing of the container and connector pipes, install thermal insulation plates over them, between lifting layers. ### **Dimensions tests** When the container has been fixed into place by filling, measure the vertical diameter of the container to make sure that it has not changed +2.0% or -1.0%; a measuring result outside the range means filling was done incorrectly. Horizontal deviation can also be measured. #### **INSTALLATION UNDER ROADS** If the container is installed into an area that is being run over by vehicles, the filling layer thickness over the container must be at least 500 mm. On the filling layer, a load balancing plate made of concrete with 150 mm thickness must be cast or installed, that is reinforced in accordance to the load that affects the plate. The load-balancing plate must have at least 1,000 mm greater diameter and length than the container. If the container is installed under a road, it should always be provided cast-iron floating hatches. It is important to make sure that the cast iron hatches are not supported on the lip of the maintenance well and service duct. ### Installation of a servicing well A servicing well is pushed onto the factory-installed collar of the container. To make the connection waterproof, it must be covered with a heat-shrinkable tape. Heat shrinkable tape must be 220 mm longer than the pipe's diameter. The width of the heat-shrinkable tape must be 200 mm in case of 600 mm servicing well.